PROJECT MEMORANDUM

DATE:

December 2, 1992

TO:

Joe Depner, Hydrogeologist

FROM:

Nels Cone, Chemist

SUBJECT:

DATA VALIDATION OF ANALYTICAL RESULTS FROM PIER 91 RCRA

FACILITY INVESTIGATION, PROJECT 624878, DATA SET #3A

On September 16, 1992, soil samples were collected by Burlington Environmental Inc. (Burlington). These samples were submitted to Sound Analytical Services of Tacoma, Washington for semivolatile compound (EPA SW-846 Method 8270) and Total Petroleum Hydrocarbon (EPA SW-846 Methods 418.1 and 8015) analyses. I performed a review of the analytical results on the samples CP-HA-7-1.5-2 and CP-HA-7-3-3.5.

Properly completed chain-of-custody forms were included, along with documented signatures from field to laboratory receipt. The samples were shown as having been properly iced and received in good condition. Holding times were clearly written and evaluated according to regulatory protocol (*National Functional Guidelines for Organic Data Review*, USEPA, 1990). The samples received the requested analyses, and laboratory extraction/analysis times met the established guidelines.

Duplicate analyses were performed as required by the Quality Assurance Project Plan (QAPP), and relative percent differences (RPD) between individual results were shown to be within quality control (QC) guidelines. Method blanks and matrix spike/matrix spike duplicate analyses displayed surrogate recoveries well within required QC limits. Supporting documentation for these analyses included instrument calibration/tuning data, and chromatographic/mass spectral data. Data consistency was demonstrated throughout.

Analytical results from these analyses indicate elevated levels of hydrocarbon compounds in all samples tested. The samples required dilution to ensure that target analyses were within the instrument calibration range. As a result, elevated detection limits were reported, and sample surrogate recoveries were outside normal QC limits. Regardless, the data quality objectives as defined in Table F-2 of the OAPP are met.

Proper data qualifier flags accompanied the analytical results as needed, and their use is consistent with USEPA guidelines. Accordingly, this data set can be considered valid for its intended use.

NC/rlk/b41:1920b.mem

FILE COPY

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

ANALYTICAL NARRATIVE

Client:

Burlington Environmental Date: October 22, 1992

Engineering

Project: 624878 Pier 91

Lab No.: 27191

Delivered by: SAS

Date Sampled: 09-16-92

Condition of Samples upon Receipt: Samples were received cold and in good condition. Chain-of-custody was in order.

SAMPLE EXTRACTION AND ANALYSIS

Samples 27191-1 and 27191-2 were analyzed for total petroleum fuel hydrocarbons in accordance with EPA SW-846 Modified Method 8015. The soil samples were extracted on 09-24-92 and analyzed on 09-29-92. Ten-fold dilutions were required prior to analysis due to the high concentration of petroleum hydrocarbons present in both samples. The surrogate recoveries could not be calculated for these samples due to the required dilutions.

The contaminant present in the samples appeared to be heavy oil. The reported concentrations were based on the diesel calibration curve and should be considered estimated quantities. The 418.1 analysis may be more appropriate for determining contaminant concentrations.

Samples 27191-1 and 27191-2 were analyzed for total petroleum hydrocarbons in accordance with EPA Method 418.1. The soil samples were extracted on 09-22-92 and analyzed on 09-23-92. 1:100 dilutions were performed prior to analysis due to the high concentration of petroleum hydrocarbons present in the samples.

Samples 27191-1 and 27191-2 were analyzed for semivolatile organics by GC/MS in accordance with EPA SW-846 Method 8270. The soil samples were extracted on 09-23-92 and analyzed on 09-29-92. quantitation limits for these samples was elevated due to the high concentrations of non-TCL analytes present in the samples.

All Quality Control was within acceptable limits.

Results for soil samples were reported on a dry weight basis.

No blank correction was employed

Data qualifier definitions are attached to the report.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

Report To: Burlington Environmental Date: October 21, 1992

Engineering

Report On: Analysis of Soil

Lab No.: 27191

Page 1 of 8

IDENTIFICATION:

Samples Received on 09-17-92

Project: 624878 Pier 91

ANALYSIS:

Lab No. 27191-1

Client ID: CP-HA7-1.5-2

Semivolatile Organics Per EPA SW-846 Method 8270

Date Extracted: 9-23-92 Date Analyzed: 9-29-92

CAS No.	Compounds	Concentration ug/kg	PQL	FLAGS
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 100-51-6 95-50-1 95-48-7 39638-32-9 106-44-5	Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol	ND ND ND ND ND ND ND	15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000	I DAGO
621-64-7 67-72-1 98-95-3 78-59-1 88-75-5 105-67-9 65-85-0 111-91-1 120-83-2 120-82-1 91-20-3 106-47-8 87-68-3 59-50-7	N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol	ND N	15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000 30,000 15,000	J

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878

Page 2 of 8 Lab No. 27191 October 21, 1992

Lab No. 27191-1

Client ID: CP-HA7-1.5-2

EPA Method 8270 Continued				
CAS No.	Compounds	Concentration ug/kg	PQL	FLAGS
77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-8 606-20-2 99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4-O-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butylphthalate	25,000 ND	15,000 15,000	J

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878

Page 3 of 8 Lab No. 27191 October 21, 1992

Lab No. 27191-1

EPA Method 8270 Continued

Client ID: CP-HA7-1.5-2

15,000

15,000

15,000

ND

CAS No.	Compounds	Concentration ug/kg	PQL	FLAGS
206-44-0	Fluoranthene	ND	15,000	
129-00-0	Pyrene	7,800	15,000	J
85-68-7	Butyl benzyl phthalate	ND	15,000	
91-94-1	3,3'-Dichlorobenzidine	ND	30,000	
56-55-3	Benzo(a)anthracene	ND	15,000	
218-01-9	Chrysene	ND	15,000	
117-81-7	bis(2-ethylhexyl)phthalate	ND	15,000	
117-84-0	Di-n-octyl phthalate	ND	15,000	
205-99-2	Benzo(b) fluoranthene	ND	15,000	
207-08-9	Benzo(k)fluoranthene	ND	15,000	
50-32-8	Benzo(a)pyrene	ND	15,000	

ND - Not Detected

193-39-5

53-70-3

191-24-2

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	Diluted Out	35 - 114 43 - 116 33 - 141 10 - 94 21 - 100 10 - 123	23 - 120 30 - 115 18 - 137 24 - 113 25 - 121 19 - 122

Burlington Environmental, Engineering

Project: 624878 Page 4 of 8 Lab No. 27191

October 22, 1992

Lab No. 27191-1

Client ID: CP-HA7-1.5-2

TPH Per EPA Method 418.1 Date Extracted: 9-22-92 Date Analyzed: 9-23-92

Total Petroleum Hydrocarbons, mg/kg

59,000

TPH Per EPA SW-846 Modified Method 8015

Date Extracted: 9-24-92 Date Analyzed: 9-29-92

Total Petroleum

Fuel Hydrocarbons, mg/kg

32,000

X2

TPH as Aged Gas, Heavy Oil and Diesel

SURROGATE RECOVERY, %

1-Chlorooctane X8 O-Terphenyl X8

Burlington Environmental, Engineering

Project: 624878 Page 5 of 8 Lab No. 27191

October 21, 1992

Lab No. 27191-2

Client ID: CP-HA7-3-3.5

Semivolatile Organics Per EPA SW-846 Method 8270 Date Extracted: 9-23-92

Date Extracted: 9-23-92
Date Analyzed: 9-29-92

CAS No.	Compounds	Concentration ug/kg	PQL
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 100-51-6 95-50-1 95-48-7	Phenol bis(2-Chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol	ND N	14,000 14,000 14,000 14,000 14,000 29,000 14,000
39638-32-9 106-44-5 621-64-7 67-72-1 98-95-3 78-59-1 88-75-5 105-67-9 65-85-0 111-91-1 120-83-2 120-82-1 91-20-3	bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-N-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene	ND ND ND ND ND ND ND ND ND ND	14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000
106-47-8 87-68-3 59-50-7	4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol	ND ND ND	29,000 14,000 29,000

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878

Page 6 of 8 Lab No. 27191 October 21, 1992

Lab No. 27191-2

Client ID: CP-HA7-3-3.5

EPA Method 8270 Continued				
CAS No.	Compounds	Concentration ug/kg	PQL	FLAGS
91-57-6 77-47-4 88-06-2 95-95-4 91-58-7 88-74-4 131-11-3 208-96-8 606-20-2 99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7 84-74-2	2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl phenyl ether Hexachlorophenol Phenanthrene Anthracene Di-n-butylphthalate	44,000 ND ND ND ND ND ND ND ND ND ND	14,000 14,000	J

ND - Not Detected

Burlington Environmental, Engineering

Project: 624878

Page 7 of 8 Lab No. 27191 October 22, 1992

Lab No. 27191-2

Client ID: CP-HA7-3-3.5

EPA Method	8270 Continued			
CAS No.	Compounds	Concentration ug/kg	PQL	FLAGS
206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3 191-24-2	Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-ethylhexyl)phthalate Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	6,300 11,000 ND ND ND ND ND ND ND ND ND ND	14,000 14,000 14,000 29,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000	J

ND - Not Detected

PQL - Practical Quantitation Limit - These are the quantitation limits for this sample. This number is based on sample size, matrix and dilution required.

Results are reported on a dry weight basis.

Semi-Volatile Surrogates

Surrogate	Percent	Control	Limits
Compound	Recovery	Water	Soil
Nitrobenzene - d ₅ 2-Fluorobiphenyl p-Terphenyl-d ₁₄ Phenol-d ₆ 2-Fluorophenol 2,4,6-Tribromophenol	Diluted Out	35 - 114 43 - 116 33 - 141 10 - 94 21 - 100 10 - 123	23 - 120 30 - 115 18 - 137 24 - 113 25 - 121 19 - 122

Burlington Environmental, Engineering Project: 624878 Page 8 of 8 Lab No. 27191 October 21, 1992

Lab No. 27191-2

Client ID: CP-HA7-3-3.5

TPH Per EPA Method 418.1 Date Extracted: 9-22-92 Date Analyzed: 9-23-92

Total Petroleum Hydrocarbons, mg/kg

66,000

TPH Per EPA SW-846 Modified Method 8015
Date Extracted: 9-24-92
Date Analyzed: 9-29-92

Total Petroleum
Fuel Hydrocarbons, mg/kg

46,000

X2

TPH as Aged Gas, Heavy Oil and Diesel

SURROGATE RECOVERY, %

1-chlorooctane o-terphenyl

X8

X8

SOUND ANALYTICAL SERVICES

DENNIS D. BEAN

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

TPH by Method 418.1

Client:

Burlington Environmental, Engineering

Lab No:

27191qc1

Matrix:

Soil mg/kg

Units: Date:

October 21, 1992

DUPLICATE

Dup No. 27191-2			
Parameter	Sample(S)	Duplicate(D)	RPD
Total Petroleum Hydrocarbons	110	110	0.0

RPD = Relative Percent Difference = $[(S - D) / ((S + D) / 2] \times 100$

METHOD BLANK

METROD BLAN	un .
Parameter	Blank Value
Total Petroleum Hydrocarbons	< 10

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 1 of 3

Client:

Burlington Environmental, Engineering

Lab No:

27191qc2

Units:

ug/kg

Date:

October 21, 1992

Blank No: S6248

METHOD BLANK

Compound	Blank Value	PQL
Phenol	ND	330
bis(2-Chloroethyl) ether	ND	330
2-Chlorophenol	ND	330
1,3-Dichlorobenzene	ND	330
1,4-Dichlorobenzene	ND	330
Benzyl Alcohol	ND	670
1,2-Dichlorobenzene	ND	330
2-Methylphenol	ND	330
bis(2-Chloroisopropyl)ether		330
4-Methylphenol	ND	330
N-Nitroso-Di-N-propylamine	ND	330
Hexachloroethane	ND	330
Nitrobenzene	ND	330
Isophorone	ND	330
2-Nitrophenol	ND	330
2,4-Dimethylphenol	ND	330
Benzoic Acid	ND	1,700
bis(2-Chloroethoxy)methane	ND	330
2,4-Dichlorophenol	ND	330
1,2,4-Trichlorobenzene	ND	330
Naphthalene	ND	330
4-Chloroaniline	ND	670
Hexachlorobutadiene	ND	330
4-Chloro-3-methylphenol	ND	670
2-Methylnaphthalene	ND	330
Hexachlorocyclopentadiene	ND	330
2,4,6-Trichlorophenol	ND	330
2,4,5-Trichlorophenol	ND	330
2-Chloronaphthalene	ND	330
2-Nitroaniline	ND	1,700
Dimethyl phthalate	ND	330
Acenaphthylene	ND	330

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 2 of 3

Client: Burlington Environmental, Engineering

Lab No: 27191qc2

Units: ug/kg

Date: October 21, 1992

Blank No: S6248

METHOD BLANK

QUALITY CONTROL REPORT

SEMIVOLATILE ORGANICS PER EPA SW-846 METHOD 8270

Page 3 of 3

Client: Burlington Environmental, Engineering
Lab No: 27191qc2
Units: ug/kg
Date: October 21, 1992

Blank No: S6248

ND = Not Detected.

PQL = Practical Quantitation Limit - These are the detection limits for this sample. This number is based on sample size, matrix and dilution required.

SEMIVOLATILE SURROGATES

Surrogate	Percent Recovery	Control Limits Water Soil						
Nitrobenzene - d5	82	35 - 114	23 - 120					
2-Fluorobiphenyl	70	43 - 116	30 - 115					
p-Terphenyl-d14	69	33 - 141	18 - 137					
Phenol-d6	79	10 - 94	24 - 113					
2-Fluorophenol	86	21 - 100	25 - 121					
2,4,6-TBP	83	10 - 123	19 - 122					

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

QUALITY CONTROL REPORT

Total Petroleum Fuel Hydrocarbons by Method 8015

Client:

Burlington Environmental, Engineering

Lab No: Units: 27191qc3 mg/kg

Date:

October 21, 1992

METHOD BLANK

Parameter	Blank Value
Total Petroleum Fuel Hydrocarbons	< 10
SURROGATE RECOVERY% 1-chlorooctane o-terphenyl	92 89

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

SOIL MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

Client Name: Burlington Environmental Engineering

Lab No:

27191qc4

Date:

November 9, 1992

	SEMI-V	OLATILE	ORGANICS				
COMPOUND	SPIKE (ug/kg)	SAMPLE RESULT	CONC MS	% REC	CONC %	REC	RPD
1,2,4-Trichlorobenzene	3,600	ND	2,600	72	2,600	72	0
Acenaphthene	3,600	ND	3,000	83	2,800	78	6
2,4 Dinitrotoluene	3,600	ND	2,800	78	2,700	75	4
Pyrene	3,600	ND	3,500	97	3,300	92	5
N-nitrosodi-n-Propylamine	3,600	ND	3,300	92	3,300	92	0
1,4-Dichlorobenzene	3,600	ND	2,400	67	2,400	67	0
Pentachlorophenol	3,600	ND	2,000	56	2,000	56	0
Phenol	3,600	ND	2,700	75	2,800	78	4
2-Chlorophenol	3,600	ND	2,800	78	2,900	81	4
4-Chloro-3-Methylphenol	3,600	ND	2,500	69	2,500	69	0
4-Nitrophenol	3,600	ND	1,200	33	1,300	36	9

RPD = Relative Percent Difference

[%] REC = Percent Recovery

*QC Limits:	RPD	<pre>% RECOVERY</pre>
1,2,4-Trichlorobenzene	23	38-107
Acenaphthene	19	31-137
2,4 Dinitrotoluene	47	28-89
Pyrene N-nitrosodi-n- Propylamine	36 38	35-142 41-126
1,4-Dichlorobenzene Pentachlorophenol	27 47	28-104 17-109
Phenol	35	26-90
2-Chlorophenol	50	25-102
4-Chloro-3-Methylphenol	33	26-103
4-Nitrophenol	50	11-114

^{*} These are advisory limits only.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922-5047

QUALITY CONTROL REPORT

WTPH-D (Diesel Range Organics)

Client: Burlington Environmental Engineering Lab No: 27191qc5 Matrix: Soil

Units: mg/kg

Date:

November 9, 1992

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY

MS/MSD No:	27191 Batch	OC					
Parameter	Lab No.	Sample Result (SR)	Spiked Sample Result (MS)	Spike Added (SA)	%R	Spike Dup Result (MSD)	RPD
Diesel	27179-6ms	412	755	446	76.9	800	5.8
Diesel	27179-6msd	412	800	446	87.0		

%R = Percent Recovery $= [(MS - SR) / SA] \times 100$

RPD = Relative Percent Difference $= [(MS - MSD) / ((MS + MSD) / 2] \times 100$

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS
4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE (206) 922-2310 - FAX (206) 922-5047

DATA QUALIFIER FLAGS

- ND: Indicates that the analyte was analyzed for but was not detected. The associated numerical value is the practical quantitation limit, corrected for sample dilution.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- C: The identification of this analyte was confirmed by GC/MS.
- B: This analyte was also detected in the associated method blank. There is a possibility of blank contamination.
- E: The concentration of this analyte exceeded the instrument calibration range.
- D: The reported result for this analyte is calculated based on a secondary dilution factor.
- A: This TIC is a suspected aldol-condensation product.
- M: Quantitation Limits are elevated due to matrix interferences.
- S: The calibration quality control criteria for this compound were not met. The reported concentration should be considered an estimated quantity.
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be
- X2: Contaminant does not appear to be "typical" product. Further testing is suggested for identification.
- X3: Identification and quantification of peaks was complicated by matrix interference; GC/MS confirmation is recommended.
- X4: RPD for duplicates outside QC limits. Sample was re-analyzed with similar results. Sample matrix is nonhomogeneous.
- X4a: RPD for duplicates outside QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike was diluted out during analysis.
- X6: Recovery of matrix spike outside QC limits. Sample was re-analyzed with similar results.
- X7: Recovery of matrix spike outside QC limits. Matrix interference is indicated by blank spike recovery data.
- X8: Surrogate was diluted out during analysis.
- X9: Surrogate recovery outside QC limits due to matrix composition.
- X10: Surrogate recovery outside QC limits due to high contaminant levels.

Data Set #3

CHAIN OF CUSTODY

210 West Sand Bank Road P.O. Box 330 Columbia, IL 62236-0330 618/281-7173 618/281-5120 FAX

CHAIN-OF-CUSTODY RECORD

C.O.C. SERIAL NO. 6060

618/281-5120	FAX																					
PROJECT	NAME P	168 9	1		-					4 00		/_	1,	/	/	7	, ,	PRESER-	/			
PROJECT NUMBER 624878 MAJOR TASK							တ	TAN TAN	3/		1./	4/				/ V	ATIVES	/				
SAMPLERS J. PUALE						Ē	123	3/	1	4.	3/					s /		REMARKS	S			
LAB DESTINATION SOUND ANALYTICAL						F Y	1	18		14	/ /	/ /	/ /	/ /	/ /3	9	(CHEMIC	AL ANALYSI	SREQ	UEST		
SAMPLE NO.	DATE	TIME	COMO	8	SAMPLE	LOCATION		NO. OF CONTAINERS	/			8)/				/ 3	CHEMICS .		FORM N	JMBER IF AF	PPLICA	IBLE)
	9-16	1015		X		-1,5-2	L	1	12	1X	K	1				K			la'n:	CP-FIR	17 -	1.5-7
	9-16	1045		1	CP- MA7	-3-3	5		K	+	K					7		2.11		<u> </u>		
	-	10.13		1						1										Q-4340000 (0,00000 0000 0000 0000 0000 0000		
																			V-18-18-18-18-18-18-18-18-18-18-18-18-18-			
									T													
RELINQUIS	SHED BY										REC	EIVE	DBY)						47			
	1	SIG	NATU	RE	Λ	0	_	DATE		ME						SIG	NATURE			D.	ATE	TIME
			, :)	Lo	l_	9-	17	10	15		M	al	m	1		1			9/1-	7	10:15 A
				<u>_</u>			Ť		1					1)		J			-///		70.1714
V							↓_		-		_											
0111551116	NOTES						1_					2 1107										
SHIPPING	NOTES										LA	тои в	E2									